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Purpose: Molecular subtyping for pancreatic cancer has made
substantial progress in recent years, facilitating the optimization of
existing therapeutic approaches to improve clinical outcomes in
pancreatic cancer. With advances in treatment combinations and
choices, it is becoming increasingly important to determine ways to
place patients on the best therapies upfront. Although various
molecular subtyping systems for pancreatic cancer have been
proposed, consensus regarding proposed subtypes, as well as their
relative clinical utility, remains largely unknown and presents a
natural barrier to wider clinical adoption.

Experimental Design: We assess three major subtype classifica-
tion schemas in the context of results from two clinical trials and by
meta-analysis of publicly available expression data to assess statistical
criteria of subtype robustness and overall clinical relevance. We then

Introduction

Recent treatment advances, including FOLFIRINOX (1), gemcita-
bine plus nab-paclitaxel (2), and olaparib for BRCA-mutant
patients (3), have provided patients and providers with better options.
With the substantial progress in molecular subtyping for pancreatic
cancer (4-9), there is now an opportunity to determine the optimal
choice of therapy given a patient's molecular subtype and other
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developed a single-sample classifier (SSC) using penalized logistic
regression based on the most robust and replicable schema.

Results: We demonstrate that a tumor-intrinsic two-subtype
schema is most robust, replicable, and clinically relevant. We devel-
oped Purity Independent Subtyping of Tumors (PurIST), a SSC with
robust and highly replicable performance on a wide range of plat-
forms and sample types. We show that PurIST subtypes have
meaningful associations with patient prognosis and have significant
implications for treatment response to FOLIFIRNOX.

Conclusions: The flexibility and utility of PurIST on low-input
samples such as tumor biopsies allows it to be used at the time of
diagnosis to facilitate the choice of effective therapies for patients with
pancreatic ductal adenocarcinoma and should be considered in the
context of future clinical trials.

biomarker information, enabling “precision medicine” approaches in
pancreatic cancer (10, 11).

Transcriptomic molecular subtyping in pancreatic cancer is cur-
rently an area of active development, where multiple subtyping
schemas for pancreatic cancer have been proposed. For example, three
molecular subtypes with potential clinical and therapeutic relevance
were first described by Collisson and colleagues (5), leveraging a
combination of cell line, bulk, and laser capture microdissected (LCM)
patient samples: Collisson (i) quasi-mesenchymal (QM-PDA), (ii)
classical, and (iii) exocrine-like. A subsequent study of patients with
pancreatic cancer, based on more diverse pancreatic cancer histologies
in addition to the most common pancreatic ductal adenocarcinoma
(PDAC), found four molecular subtypes (4): Bailey (i) squamous, (ii)
pancreatic progenitor, (iii) immunogenic, and (iv) aberrantly differ-
entiated endocrine exocrine (ADEX). More recently, Puleo and col-
leagues describe five subtypes that are based on features specific to
tumor cells and the local microenvironment (7). Maurer and collea-
gues performed LCM of both tumor and stroma and showed the
contribution of each to the three schemas above (8). Finally, we have
previously shown two tumor-intrinsic subtypes of PDAC (6), which
we called Moffitt (i) basal-like, given the similarities with basal breast
and basal bladder cancer, and (ii) classical, given the overlap with the
Collisson classical subtype.

However, consensus regarding proposed subtypes for clinical
decision making in PDAC has been elusive. In addition, each proposed
schema utilized independent cohorts of patients to demonstrate
clinical relevance. As a result, the generalizability, robustness, and
relative clinical utility of each proposed subtyping schema remains
unclear. Comparative evaluations of these proposed subtyping systems
have been limited, partially due to the difficulty in curating and
applying these diverse subtyping approaches in new datasets.
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Translational Relevance

Molecular subtyping for pancreatic cancer has made substantial
progress in recent years, facilitating the optimization of existing
therapeutic approaches to improve clinical outcomes in pancreatic
cancer. We show that a tumor-intrinsic two-subtype schema is the
most replicable and clinically robust across different subtype
schemas, with basal-like subtype tumors showing resistance to
FOLFIRINOX-based regimens in two independent clinical trials.
Our results strongly support the need to evaluate molecular sub-
typing in treatment decision-making for patients with PDAC in the
context of future clinical trials. We present PurIST, a clinically
usable single-sample classifier that is robust and highly replicable
across different gene expression platforms and sample collection
types, and may be utilized in future clinical trials.

Toward this end, we perform, for the first time, a systematic
interrogation of the aforementioned subtyping schemas, based on a
meta-analysis of their clinical utility across a large number of inde-
pendent cohorts in PDAC including two clinical trials with treatment
response data. We demonstrate that a tumor-intrinsic two-subtype
schema from Moffitt and colleagues (6) is robust and best explains
overall survival (OS) and treatment response across multiple valida-
tion datasets. Given the clinically replicable performance of this
tumor-intrinsic two-subtype schema, we have developed a single-
sample classifier (SSC) that we call Purity Independent Subtyping of
Tumors (PurIST) to perform subtype calling for clinical use. We show
that PurIST performs well on multiple gene expression platforms
including microarray, RNA sequencing (RNAseq), and NanoString.
In addition, given the preponderance of nonsurgical biopsies in the
neoadjuvant and metastatic settings, we demonstrate its clinical
utility for small sample volumes using a matched cohort of patients
with bulk, archival, and fine-needle aspirations (FNA) samples.
Finally, we show the stability of PurIST-predicted subtypes before
and after treatment, and that PurIST basal-like subtype tumors are
associated with treatment resistance to FOLFIRINOX, strongly
supporting the need to incorporate subtyping into clinical trials
of patients with PDAC.

Materials and Methods

Public datasets

Archival data were obtained from public sources (Supplementary
Table S1; Fig. 1). For the public datasets, expression was used “as-is”
with respect to the original publication, that is, RNAseq data were not
realigned and gene-level expression estimates were provided in terms
of fragments per kilobase per million reads (FPKM) or transcripts per
million (TPM), depending on the study.

Sample collection

Deidentified bulk and FNA samples (“Yeh_Seq” dataset; Supple-
mentary Table S1) were collected from the Institutional Review Board
(IRB)-approved University of North Carolina Lineberger Compre-
hensive Cancer Center Tissue Procurement Core Facility after IRB
exemption in accordance with the U.S. Common Rule and were flash
frozen in liquid nitrogen. FNA samples were collected ex vivo at the
time of resection. The FNA technique used mirrors standard cytopa-
thology procedures, where three passes were performed using a 22-
gauge needle. Palpation was used to localize the tumor. Samples were
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frozen in either PBS or RNAlater (Millipore Sigma). FFPE samples
were prepared, hematoxylin and eosin stained, and reviewed by a
single pathologist (K.E. Volmar) who was blinded to the results. See
Supplementary Materials and Methods for data processing and anal-
ysis of Yeh_Seq samples. RNAseq (GSE131050) and NanoString
(GSE131051) data generated from these samples are deposited in
Gene Expression Omnibus (GEO).

Sample inclusion for consensus clustering analysis and PurlST
training

Each collected public dataset was subjected to sample filtering to
retain samples for consensus clustering (CC)-based subtype calling by
the Collisson, Bailey, and Moffitt schemas, with criteria specified in
Supplementary Table S1. We implemented the methods utilized in the
original publication pertaining to each schema (Supplementary Mate-
rials and Methods). When prior subtype calls were available, the
original published calls were used. Specifically, in PACA_AU_seq and
PACA_AU_array, the original Bailey subtype calls were used; in
TCGA_PAAD, the Collisson and Bailey calls were used.

For treatment response and survival analysis, samples with
available clinical and RNAseq data were used. Specifically, for
the pooled survival analysis, samples from the following datasets
with RNAseq data and CC calls were utilized: Linehan, Moffitt_
GEO_array, PACA_AU_seq, PACA_AU_array, and TCGA_PAAD
(survival group, Supplementary Table S1). Duplicated samples
in PACA_AU_seq and PACA_AU_array datasets were only used
once, with the subtypes called in PACA_AU_array used when
mismatches of subtype calls were found between the two datasets.
To train PurIST, Moffitt schema CC calls from the datasets in the
training group (Aguirre, Moffitt_GEO_array, and TCGA_PAAD;
Supplementary Table S1) were utilized. These samples were
further filtered to provide final training labels for the PurIST
algorithm (Supplementary Tables S1 and S2) by dropping poorly
clustered samples on the clustered dendrogram in each dataset
based on visual inspection. We considered these filtered calls as
“training labels.” Model training for PurIST is described in the
Supplementary Materials and Methods.

Results

The Moffitt tumor-intrinsic two-subtype schema has important
implications for treatment response

To evaluate the potential impact of molecular subtypes on treatment
response, we utilize transcriptomic and treatment response data from
two independent clinical trials, and perform a systematic analysis of
treatment response with respect to CC calls from each of the three
different subtyping schemas (Supplementary Materials and Methods,
Supplementary Fig. S1) for PDAC: Collisson, Bailey, and Moffitt (4-6).
We first examined the association of the subtypes from each schema
with treatment response using patient samples from a promising phase
Ib trial by Nywening and colleagues (“Linehan,” Linehan_seq dataset;
Supplementary Tables S1 and S2) of FOLFIRINOX in combination
witha CCR2 inhibitor (PF-04136309) in patients with locally advanced
PDAC, where an objective response was seen in 49% of patients (12).
Enrolled patients had no prior treatment, and underwent core biopsies
prior to the start of therapy. Twenty-eight patients with RNAseq and
treatment data were available for analysis.

We found a significant overall association between categorical
treatment response (based on RECIST 1.1 criteria) and pretreatment
subtype classifications from the Moffitt schema (P = 0.0117; Supple-
mentary Table S3), where basal-like tumors showed no response to
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Figure 1.

Overall study workflow outlining the analyses performed, including the training and validation steps of the PurlST model. Supp., supplementary; CMH, Cochran-

Mantel-Haenszel test; Strat. Cox PH, stratified Cox proportional hazards model.

FOLFIRINOX alone or FOLFIRINOX plus PF-04136309 after strat-
ifying by arm [overall response rate (ORR) = 0%; disease control rate
(DCR) = 33%; Supplementary Table S3, Fig. 2A, generalized
Cochran-Mantel-Haenszel test], whereas classical tumors showed a
much stronger response overall (ORR = 40%; DCR = 100%). In
contrast, we were unable to identify a relationship between subtype and
treatment response under the Collisson (P = 0.428) and Bailey (P =
0.113) schemas (Fig. 2A; Supplementary Table S3). As the sample size
in this phase Ib trial (n = 28 patients) was small, we similarly
reanalyzed the COMPASS trial results (n = 40 patients) in the context
of the three subtyping schemas.

Clin Cancer Res; 26(1) January 1, 2020

Patients enrolled in COMPASS underwent core-needle biopsies
and were treated with one of two standard first-line therapies,
modified-FOLFIRINOX or gemcitabine plus nab-paclitaxel. Col-
lected patient samples in COMPASS underwent laser capture
microdissection (LCM) followed by whole genome sequencing and
RNAseq. Subtypes for each schema were determined as mentioned
previously. Similar to our findings in the Linehan phase Ib trial, we
found a significant association between the Moffitt two subtype
schema with categorical treatment response stratifying by arm (P =
0.00098, generalized Cochran-Mantel-Haenszel test), where the
basal-like subtype had much lower response to either treatment
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Subtype performance in discriminating treatment response. A and B, Waterfall plots showing the percent change (% change) in size of tumor target lesions from
baseline in the context of the Collisson, Bailey, and Moffitt schemas in the Linehan (A) and COMPASS trials (B). +20% and —30% of size change are marked by dashed
lines. Bar colors denote respective subtype calls of pretreatment samples. RECIST treatment response classification based on these values are given in
Supplementary Table S3. A, Colored tracks below each plot denote the subtype calls in pre- and posttreatment. Patients marked with * were treated with
FOLFIRINOX. The remainder of patients were treated with FOLFIRINOX -+ PF-04136309. B, Patients marked with * were treated with gemcitabine/nab-paclitaxel
(GP)-based therapy. The remainder of patients were treated with modified FOLFIRINOX (m-FOLFIRINOX). C, Sankey plots showing transitions in subtype pre- and
posttreatment in the Linehan trial in the context of the Collisson, Bailey, and Moffitt schemas.

(ORR = 10%; DCR = 50%) relative to the classical subtype (ORR =
36.7%; DCR = 100%). We also found significant associations
between treatment response and the subtypes from the Collisson
(P = 0.0024) and Bailey (P = 0.0067) schemas. However, we notably
observe that the Bailey squamous subtype strongly overlaps with the
Moffitt basal-like subtype, and the remaining nonsquamous Bailey
subtypes appear to overlap strongly with the Moffitt classical
subtype (Fig. 2B, Cohen Kappa = 1.0, P = 2.54 x 10 '°). We
similarly found that the Collisson QM-PDA and the remaining
non-QM-PDA subtypes correspond strongly with the Moffitt basal-
like and classical subtypes, respectively (Fig. 2B, Cohen Kappa =
0.875, P = 2.44 x 10~®), a fact also mirrored in the Linehan trial.

Given these observations, we formally evaluated the relative clinical
utility of each subtyping system using nonnested model selection
criteria such as Bayesian information criterion (BIC; ref. 13). Briefly,
such criteria evaluate model fit relative to the complexity of the model,
as models with more predictors (subtypes) may simply have better fit
due to overfitting, and also may contain excess predictors (additional
subtypes) that do not contribute meaningfully in differentiating
clinical outcomes. The model with the lowest BIC in a series of
competing candidate models is preferred in statistical applications,
and is agnostic to the magnitude of the difference (14). Considering
response as a continuous outcome (% change in tumor volume), we
find that the Moffitt schema had the best (lowest) BIC score in both
datasets (Linehan BIC = 247.37, COMPASS BIC = 378.75, two-way
ANOVA model; Supplementary Table S3), compared with the Col-
lisson (Linehan BIC = 254.63, COMPASS BIC = 382.8) and Bailey
(Linehan BIC = 250.75, COMPASS BIC = 385.66) schemas. This
result similarly held if we considered response as a categorical variable
(ordinal regression model; Supplementary Table $3). This finding is
also reflected among the non-QM-PDA and nonsquamous subtypes
(Fig. 2A and B; Supplementary Table S3), where little difference in
response can be seen between these subtypes. Our results using BIC
suggest that the additional subtypes found in the Collisson and Bailey
schemas do not demonstrate additional benefit in differentiating
treatment response over the Moffitt two-subtype schema. Taken
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together, these results suggest that the Moffitt basal-like and classical
subtypes strongly and parsimoniously explains treatment response
relative to other schemas in both clinical trials.

The Linehan phase Ib trial captured both pre- and posttreatment
biopsies, providing a unique opportunity to evaluate the stability of
molecular subtypes after treatment. As pre- and posttreatment biop-
sies are unlikely to be obtained from the same location, these samples
may also provide an opportunity to evaluate intrapatient tumor
heterogeneity. Interestingly, we found strong stability in the Moffitt
schema subtypes in pre- and posttreatment biopsies (Fig. 2C; Cohen
Kappa = 1.0; P = 2.54 x 10~ '%), suggesting that not only may there be
less tumor-intrinsic subtype heterogeneity within a tumor, but also
that the Moffitt schema subtypes are not affected by treatment, either
with FOLFIRINOX or with the addition of the CCR2 inhibitor. In
contrast, we found higher rates of switching in Collisson subtypes pre-
to posttreatment (Fig. 2C; Supplementary Fig. S2), where changes in
the exocrine-like and classical subtypes were more common. Similarly,
the nonsquamous Bailey subtypes appeared to show the highest rate of
subtype switching pre- and posttreatment, with the ADEX subtype
demonstrating the highest rate of switching among these subtypes
(Supplementary Fig. S2). It is unclear whether there is any clinical
significance to such subtype transitions. Prior studies have suggested
that the Bailey ADEX, Bailey immunogenic, and Collisson exocrine-
like subtypes are confounded by tumor purity in contrast to the Moffitt
subtypes (7-9), which may explain some of the increased heterogeneity
in subtypes pre- and posttreatment in these schemas. In contrast, the
Collisson QM-PDA and Bailey squamous subtypes, which were shown
to overlap strongly with the Moffitt basal-like subtype, were observed
to be much more stable between the two time points.

The tumor-intrinsic two-subtype schema strongly and
replicably differentiates patient survival across multiple studies
Given the paucity of available genomic data in the context of
treatment response in PDAC, we also perform a meta-analysis of five
independent patient cohorts with OS data available: Linehan_seq,
Moffitt GEO array (GSE71729), ICGC PACA_AU array, ICGC
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Figure 3.

Subtype performance in predicting patient prognosis in pooled datasets from the survival group (Supplementary Table S1). Kaplan-Meier plots of OS in the
context of the subtyping schemas of Collisson (A), Bailey (B), and Moffitt (C). Log-rank P values for overall association were determined from stratified Cox
proportional hazards models, where dataset was used as a stratification factor to account for variation in baseline hazard across studies. BIC was calculated to

compare the three subtyping schemas.

PACA_AU seq, and TCGA PAAD (survival group; Supplementary
Tables S1 and S2). To determine the potential replicability of the
different subtyping schemas (Collisson, Bailey, Moffitt) in differenti-
ating clinical outcomes, we utilized CC subtype calls from each
schema.

We find that the Moffitt tumor-intrinsic two-subtype schema
reliably differentiates survival across individual datasets (Supple-
mentary Fig. S1; Supplementary Table S4), showing significant
associations with OS in the majority of individual studies in contrast
to other schemas. After pooling datasets, we found that patients
with Moffitt basal-like subtype tumors have significantly worse
prognosis compared with the Moffitt classical subtype (Fig. 3C,
stratified HR = 1.98, P < 0.0001, stratified Cox proportional hazards
model). We also observed similar trends in the Bailey squamous and
Collisson QM-PDA subtypes relative to other subtypes in the same
schemas (Fig. 3A and B), mirroring our treatment response results
from the previous section (Fig. 2A and B). However, overall
subtype-specific survival differences were most pronounced within
the two-subtype schema across studies (Supplementary Table S4),
compared with the Collisson (P = 0.069) and Bailey (P = 0.076)
schemas. Moreover, we find that that nonsquamous subtypes in the
Bailey schema have very similar OS to one another (Fig. 3B), where
a direct overall comparison of these subtypes showed no statistically
significant differences in survival in our pooled dataset (immuno-
genic vs. ADEX stratified HR = 1.07, pancreatic progenitor vs.
ADEX HR = 1.01, overall P = 0.82). We find a similar result when
comparing survival among patients from the non-QM-PDA sub-
types in the Collisson schema in the pooled data (Fig. 3A; exocrine-
like vs. classical stratified HR = 1.17; P = 0.344).

In our pooled dataset, strong correspondence was again found
between the Bailey squamous, Collisson QM-PDA, and Moffitt bas-
al-like subtypes, and between the Moffitt classical subtype and the
remaining subtypes in the Bailey (Cohen Kappa = 0.56, P = 0;
Supplementary Fig. S3A) and Collisson (Cohen Kappa = 0.4, P =
0; Supplementary Fig. S3B) schemas. In TCGA PAAD, where esti-
mates of tumor purity were available, Moffitt classical patients that
were also classified as QM-PDA in the Collisson schema had much
lower tumor purity than other samples (P = 0.0016; Supplementary

Clin Cancer Res; 26(1) January 1, 2020

Fig. S3C). The Bailey ADEX and immunogenic samples also had lower
tumor purity, regardless of whether they were called Moffitt classical or
basal-like (Supplementary Fig. S3D). These findings are similar to
other studies (7-9), and suggest that the discordance in subtype
assignment between schemas may be driven by tumor purity.

To determine the best fitting model for OS, we calculate BIC with
respect to the stratified Cox proportional hazards model pertaining to
each schema. Similar to our analysis of treatment response, we find that
the Moffitt two-subtype schema has the best (lowest) BIC and there-
fore has the best and most parsimonious fit to the pooled survival data
(Fig. 3; Supplementary Table S4). We also find this to be the case in the
majority of individual studies, replicated across each of our validation
datasets (Supplementary Table S4). These results reflect our finding
that no difference in OS can be observed among the Collisson non-
QM-PDA and Bailey nonsquamous subtypes in our pooled analysis. In
total, these findings support the conclusion that the Moffitt two-
subtype schema strongly and parsimoniously explains differences in
OS, compared with alternate subtyping schemas. Our results further
suggest that the additional subtypes found in the Collisson and Bailey
schemas do not demonstrate additional clinical benefit in terms of
predicting OS relative to the simpler Moffitt two-subtype schema,
based on BIC and direct statistical comparison of the Collisson non-
QM-PDA and Bailey nonsquamous subtypes. Given the robustness
and highly replicable clinical utility of the Moffitt schema, we next
developed a SSC based on this tumor-intrinsic two-subtype schema to
avoid reliance on CC-based analysis.

PurlST SSC

The ability to resolve and assign subtypes via clustering is limited
when applied to individual patients. Reclustering new samples with
existing training samples may also change existing subtype assign-
ments. Thus, we developed a robust SSC, PurIST, to predict subtype in
individual patients, based on our three largest bulk gene expression
datasets (TCGA PAAD, Aguirre Biopsies, and Moffitt GSE71729,
training group; Supplementary Table S1). A key element of our
method includes the utilization of tumor-intrinsic genes previously
identified (6) to avoid the possible confounding of tumor gene
expression with those from other tissue types. For model training,
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we designated training labels (Supplementary Materials and Meth-
ods). We use rank-derived quantities as predictors in our final SSC
model instead of the raw expression values, utilizing the k Top
Scoring Pair (KTSP) approach to generate these predictors (Sup-
plementary Materials and Methods). The motivation of this
approach is that while the raw values of gene expression may be
on different scales in different studies, their relative magnitudes can
be preserved by ranks.

We find that this type of rank transformation of the raw
expression data has several advantages. First, a single predictor
(TSP) only depends on the ranks of raw gene expression of a
gene pair in a sample. Hence, its value is robust to overall technical

A

DOI: 10.1158/1078-0432.CCR-19-1467

PurlST, A Single-sample Classifier for Pancreatic Cancer

shifts in raw expression values (i.e., due to variation in sequencing
depth), and, as a result, is less sensitive to common between-sample
normalization procedures of data preprocessing (15-17). Second,
it simplifies data integration over different training studies as data
are on the same scale. Finally, prediction in new patients is also
simplified, as normalizing new patient data to the training set is no
longer necessary, which may further affect the accuracy of model
predictions (16).

Development and external validation of PurlST classifier
We apply a systematic procedure (Supplementary Materials
and Methods) implementing the above approach to derive our PurIST
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Figure 4.

Development and validation of the PurlST SSC classifier. A, Overview of PurlST prediction procedure. Gene expression for genes pertaining to each PurIST TSP s first
measured in a new sample. Values are assigned for each TSP given the relative expression of each gene in the TSP (1 if gene A > gene B expression in the pair, O
otherwise). Given the set of estimated PurlST TSP coefficients, a TSP score is calculated by summing the product of each TSP and its corresponding TSP coefficient,
adjusting for the model intercept. This value is finally transformed into a predicted probability of belonging to the basal-like subtype for classification (inverse logit
function). B, Heatmap of expression values pertaining to PurlST genes and patients from six validation studies belonging to the validation group (Group Membership,
Supplementary Table S1). Columns are ordered by PurIST SSC-predicted basal-like probability. Genes pertaining to each TSP are presented in order along the rows,
where genes with higher expression in the basal-like subtype in the pair are labeled with an orange bar on the left track and blue otherwise. CC subtype and training
labels used for PurIST SSC training (white bars indicate not utilized for training) show strong correspondence with the SSC-predicted subtypes. Switching in relative
gene expression within each gene pair can be observed with respect to subtype. Expression values across PurlST genes were rank transformed to equalize the
expression scales across studies. SSC predicted basal-like probabilities were separated into subclasses to illustrate the level of model confidence in prediction
(Materials and Methods). C, Barplot of SSC confidence levels categorizing the predicted basal-like class probabilities indicate that the majority of predictions are
highly confident, with few in the “likely” ranges of each (predicted probabilities between 0.4 and 0.6). D, Misclassification rates among higher confidence predictions
(strong classical/basal) in either subtype are very low. Shading of bars indicate the relative percentage of each CC subtype in a given prediction category. Lower
confidence predictions (Likely/Lean categories), as expected, have higher misclassification rates with respect to CC subtypes but are less frequent overall.
E, Consensus ROC curve derived across all six validation studies (blue) in addition to ROC curves pertaining to each individual study (gray) are presented. The
consensus AUC is relatively high at 0.993, indicating excellent prediction performance utilizing the CC subtypes as ground truth. F, Interstudy variability curve
indicates low variability (y-axis) across studies with respect to various basal-like predicted probability thresholds (x-axis) utilized to classify subjects at basal or
classical. At the standard basal-like probability threshold of 0.5, the between study variability in ROC curves is very low, suggesting strong replicability in classification
performance of the PurIST SSC across studies. G, Table showing individual metrics assessing PurlST performance in recapitulating CC subtypes in each validation
dataset.
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model for prediction in the tumor-intrinsic two-subtype schema
given the training labels (Supplementary Materials and Methods)
and rank transformed predictors for each training samples.
The selected eight gene pairs (TSP), fitted model, and model
coefficients are given in Supplementary Table S5. Figure 4A (Sup-
plementary Materials and Methods) describes the validation that is
performed in a hypothetical new patient by computing the values of
each of the eight selected TSPs in that patient, where a value of 1 is
assigned if the first gene in a TSP, gene A, has greater expression
than the second gene, gene B, in that patient (and assigned 0 value
otherwise). These values are then multiplied by the corresponding
set of estimated TSP model coefficients, summing these values to get
the patient “I'SP Score” after correction for estimated baseline
effects. This score is then converted to a predicted probability of
belonging to the basal-like subtype, where values greater than 0.5
suggest basal-like subtype membership and the classical subtype
otherwise.

To assess the quality of our prediction model, we evaluate the
cross-validation error of the final model in our training group. We
find that the internal leave-one-out cross-validation error for
PurIST on the training group is low (3.1%). To validate this model,
we apply it to the validation group datasets (Supplementary
Table S1; Fig. 4) and determine whether PurIST predictions reca-
pitulate the CC subtypes in each study. We find that pooled
validation samples strongly segregate by CC subtype when sorted
by their predicted basal-like probability, despite diverse studies
of origin (Fig. 4B). These suggest that our methodology avoids
potential study-level batch effects. The relative expression of clas-
sifier genes within each classifier TSP (paired rows, Fig. 4B) strong-
ly discriminates between subtypes in each sample, forming the
basis of our robust TSP-oriented approach for subtype prediction
(Supplementary Fig. S4). We also find that, visually, predicted
subtypes from PurIST have strong correspondence with indepen-
dently determined CC subtypes. Overall, the PurIST classifier
predicted subtypes with high levels of confidence (Fig. 4C), with
most basal-like subtype predictions having predicted basal-like
probabilities >0.9 (strong basal-like), and most classical subtype
predictions with predicted basal probabilities of <0.1 (strong clas-
sical). Among these high confidence predictions, the majority of
these calls corresponded with subtypes obtained independently via
CC (Fig. 4D). Lower confidence calls (likely/lean basal-like/classical
categories of prediction) had higher rates of misclassification,
although these less confident calls were more rare in our validation
datasets (Fig. 4C).

To evaluate the overall classification performance of PurIST
across studies, we apply a nonparametric meta-analysis approach
to obtain a consensus ROC curve based on the individual ROC
curves from each validation study (18). We found that the overall
consensus AUC is high, with a value of 0.993. ROC curves from
individual studies were also consistent (Fig. 4E). In addition, we
find that the estimated interstudy variability of these ROC curves
with respect to predicted basal-like probability threshold ¢ is low
overall, with relatively higher variance at low thresholds and almost
no variability at our standard threshold of 0.5 or greater (Fig. 4F).
These reflect the similarity of individual ROC curves seen in Fig. 4E.
We find that within our validation datasets, the prediction accuracy
rates were in general 90% or higher, and individual study AUCs
were 0.95 or greater (Fig. 4G). Furthermore, sensitivities and
specificities were often high and in some cases equal to 1, reflecting
near perfect classification accuracy. These results suggest that
PurlIST is robust across multiple datasets and platforms and reca-
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pitulates the subtypes independently obtained via CC, which we
have shown to have high clinical utility.

Replicability of PurlST in archival formalin-fixed and paraffin
embedded and FNA samples

Because frozen bulk tumor samples are not commonly available in
routine clinical practice, we next looked at the replicability of PurIST
predictions across sample types that are more widely collected in
clinical practice. Notably, nearly all preoperative and metastatic
biopsies are obtained using either FNA or core biopsy techniques.
Prior studies have shown the feasibility of performing RNAseq on core
biopsies (11) and endoscopic ultrasound guided FNAs, both of which
are commonly utilized in the diagnosis of pancreatic cancer (19). We
therefore evaluated the performance of PurIST in both formalin-fixed
and paraffin embedded (FFPE) and FNA samples.

Among 47 pairs of matched FNA and bulk samples that passed
quality control (Yeh_Seq dataset; Supplementary Materials and Meth-
ods), we found significant agreement between the PurIST subtype calls
of the matched FNA and bulk samples (Cohen Kappa = 0.544; P =
2.8e—05; Fig. 5A; Supplementary Table S1). Only three pairs of
samples (6.4%) show disagreement in subtype calling results using
PurIST. CC calls of the bulk samples are also shown as a comparison.
We performed a similar evaluation with tumors that we had matched
FFPE, FNA, and bulk samples available (Fig. 5B; Supplementary
Table S1). We found complete agreement among PurlST subtype
predictions among FFPE, FNA, and bulk samples in patients that had
all three sample types available (five sets total), further supporting that
PurlIST is robust across different sample preparations. We also found
that the genes pertaining to PurIST TSPs are comparatively less
variable than genes not designated as tumor-intrinsic (Supplementary
Fig. S5). For example, PurIST TSP genes, originally selected from our
tumor-intrinsic gene list, have significantly higher Spearman corre-
lation between sample types than Bailey immunogenic (P = 0.0149) or
ADEX genes (P = 0.0083; Supplementary Fig. S5), using a permutation
test (Supplementary Materials and Methods). The stability of TSP
genes across sample types, support their robustness and their ability to
identify tumor-intrinsic signals in samples that may be confounded by
low-input or degradation.

Replicability of PurIST predictions on a NanoString platform
RNAseq assays in Clinical Laboratory Improvement Amendments
(CLIA)—certified laboratories are still in their infancy. Thus, we
evaluated the performance of PurIST on samples using NanoString
nCounter, a gene expression quantification system that directly quan-
tifies molecular barcodes. This platform has been widely used in cancer
molecular subtyping (20), and is more widely available in CLIA-
certified laboratories. In samples with both RNAseq and NanoString
platform expression data available, we evaluated the consistency
between subtype calls based on their RNAseq and NanoString expres-
sion data using PurIST-n (Fig. 5C; Supplementary Table S5; Supple-
mentary Materials and Methods). This updated classifier is trained in a
manner similar to PurlST, with the exception that genes were
limited to those in common between the two platforms, as a more
limited set of genes were available for our NanoString probeset. We
found that there was strong agreement between PurIST-n calls in
51 patients with matched RNAseq/NanoString samples (Cohen
Kappa = 0.879; P = 2.25e—11), where only one sample showed
disagreement in its PurIST-n call. This discrepancy may be due to
the relatively lower read count in the RNAseq sample for this
patient. In addition, it is noteworthy that the PurIST-n call for
this sample is a low confidence call (“lean classical”). These results
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Figure 5.

Comparison of CC and PurlIST performance on different sample collections and gene expression platforms. A, Comparison of subtyping results using PurIST
between matched FNA and bulk RNAseq samples. PurlST scores (estimated log-odds of a sample being basal-like vs. classical, Supplementary Materials and
Methods) are in the upper waterfall plot (solid dark slate gray, bulk; solid light blue, FNA) and inferred subtypes are in the corresponding boxes below (solid
blue, classical; solid orange, basal-like). Bulk RNAseq CC results are indicated by blue (classical) and orange (basal-like) square borders. *, ampullary
carcinoma. B, Subtyping results using PurIST across matched FNA, FFPE, and bulk RNAseq samples. PurlST scores are in the top waterfall plot (solid dark slate
gray, bulk; solid light blue, FNA; solid brown, FFPE) and inferred subtypes are in the corresponding boxes below (solid blue, classical; solid orange, basal-like).
As a comparison, bulk RNAseq CC results are indicated by blue (classical) versus orange (basal-like) square borders. “*”, NanoString. C, Subtyping results
using PurIST (and PurlST-n for NanoString) between matched RNAseq and NanoString samples. The PurlST(-n) scores (estimated log odds of a sample being
basal-like vs. classical, Materials and Methods) are in the top waterfall plot (solid red, RNAseq; solid green, NanoString). Inferred subtypes are in the
corresponding boxes below (solid blue, classical; solid orange, basal-like). Bulk RNAseq CC results are indicated by blue (classical) and orange (basal-like)
square borders. A-C, Border colors of waterfall plots indicate sample origin. Cohen kappa coefficients and P values measure the agreement on subtype calls
between bulk and FNA in A, and RNAseq and NanoString in C.

48 of 49 PDAC subtype calls compared with the previous CC-based
calls in the COMPASS dataset, and 66 of 66 subtype calls in the

support the replicability of PurIST on the NanoString platform and
suggest that NanoString may be more robust at overcoming the

hurdles of low input or degraded samples.

Applicability of PurIST to treatment decision making

We next evaluated the potential utility of using PurIST for clinical
decision making. In basal-like and classical samples that were classified
by PurlST, we found significant survival differences in both the pooled
public (with all training group samples removed) and the Yeh_Seq
FNA datasets, with basal-like samples showing shorter OS (Fig. 6A
and B; Supplementary Fig. S6; Supplementary Table S4). We then
looked at the relevance of PurlST to treatment response in the
COMPASS and Linehan trials (Fig. 6C and D). PurIST recapitulated

AACRJournals.org

Linehan dataset (Supplementary Tables S1 and S2). Only one patient
with a CC classical tumor was called basal-like by PurIST and had
stable disease (SD, % change >—30% and <20%) in the COMPASS
trial. Notably, the only PR seen in a PurIST basal-like tumor was in a
patient with an unstable DNA subtype (10). In agreement with our CC
analysis (Fig. 2B), we find that PurIST-predicted subtype tumors had
similar associations with treatment response (Fig. 6C and D; Supple-
mentary Table $3). We also found no change in PurIST subtype or the
confidence of the call after treatment, suggesting that PurIST tumor
subtypes are unchanged after treatment with FOLFIRINOX + PF-
04136300 (Fig. 6D and E). Finally, after excluding the sample with an
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Figure 6.

Clinical relevance of PurlST SSC in datasets belonging to the treatment group. A and B, Kaplan-Meier plots of OS in pooled datasets (A) belonging to the survival
group minus datasets belonging to the training group and Yeh Seq FNA samples (B). P value and HRs for overall association were estimated by stratified Cox
proportional hazards model in A, where dataset of origin was used as a stratification factor. C and D, Waterfall plots showing the percent change (% change) in size of
tumor target lesions from baseline in the context of PurlST subtypes in the COMPASS (C) and Linehan trials (D). +20% and —30% of size change are marked by
dashed lines. C, Bar colors denote PurlST subtype calls of the patient tumors. Patients marked with * were treated with gemcitabine/nab-paclitaxel (GP)-based
therapy, and the rest were treated with modified FOLFIRINOX (m-FOLFIRINOX). D, Bar colors denote PurlST subtype calls of pretreatment samples. Colored tracks
below to compare subtype calls for samples pre- and posttreatment of PurlST subtyping and the Moffitt schema. Patients marked with * were treated with
FOLFIRINOX, and the rest were treated with FOLFIRINOX--PF-04136309. E, Correlation between the PurIST score (basal-like probability) for patient samples pre-
and posttreatment in the Linehan trial. Basal-like samples were colored by orange and classical samples are colored by blue. F and G, Correlation between the
percentage of change (% change) of tumors and the PurlST score (basal-like probability) derived from PurlST in basal-like (F) and classical samples (G), excluding the
basal-like sample with an unstable DNA subtype.

unstable DNA subtype, we show a positive correlation between PurIST
basal-like predicted class probabilities and worse treatment response in
basal-like tumors (Fig. 6F). No association of PurIST classical con-
fidence and treatment response was seen (Fig. 6G).

Discussion

Several subtyping systems for pancreatic cancer have now been
proposed. Despite this, several limitations remain before they can be
clinically usable. Here we leverage the wealth of transcriptomic
studies that have been performed in pancreatic cancer to determine
the molecular subtypes that may be most clinically useful and
replicable across studies. Our results show that while multiple
molecular subtypes may be used to characterize patient samples,
the two tumor-intrinsic subtypes from the Moffitt schema: basal-
like (overlaps with Bailey squamous/Collisson QM-PDA) and
classical (overlaps with non-Bailey squamous/non-Collisson QM-

Clin Cancer Res; 26(1) January 1, 2020

PDA) are the most concordant and clinically robust. The compel-
ling findings of basal-like tumors showing resistance to FOLFIR-
INOX and the lack of objective studies comparing current first-line
therapies FOLFIRINOX versus gemcitabine plus nab-paclitaxel
strongly support the need to evaluate the role of molecular sub-
typing in treatment decision making for patients with PDAC.
Therefore, we have developed a SSC based on the two tumor-
intrinsic subtypes that avoids the instability associated with current
strategies of clustering multiple samples and the low tumor purity
issues in PDAC samples.

Prior studies have shown that merging samples from multiple
studies (horizontal data integration) can improve the performance
of prediction models, relative to training on individual studies (21).
However, systematic differences in the scales of the expression
values in each dataset are often observed, as some may have been
separately normalized prior to their publication or were generated
from a variety of expression platforms. Complicated cross-platform
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normalizations are often employed in such situations prior to model
training. Furthermore, new samples must be normalized to the
training dataset prior to prediction to obtain relevant predicted
values. This often results in a “test-set bias" (16), where predictions
may change due to the samples in the test set or the normalization
approach used. In addition, prediction models may change with the
addition of new training samples, as renormalizations may be
warranted among training samples. In all, this leads to potential
complications for data merging, stability of prediction, and model
accuracy (22, 23). We present PurIST, which is not dependent on
cross-study normalization, and is robust to platform type and
sample collection differences. We show that the sensitivity and
specificity of PurlIST calls are high across multiple independent
studies, demonstrating that the PurIST classifier recapitulates the
tumor-intrinsic subtype calling obtained initially by CC. Given
the significant clinical relevance of the two tumor-intrinsic subtypes
for both prognosis and treatment response, and the high accuracy
of predicted subtype calls in our validation datasets, PurIST may
have tremendous clinical value. Specifically, we show that PurIST
works for gene expression data assayed across multiple platforms,
including microarrays, RNAseq, and NanoString. Furthermore, the
algorithm provides replicable classification for matched samples
from snap-frozen bulk tissue as well as FNA, core biopsies, and
archival tissues.

Thus, PurIST may be flexibly used on low input and more
degraded samples and may be performed with targeted gene expres-
sion platforms such as NanoString, avoiding the need for a CLIA
RNAseq assay. Our enduring findings that basal-like subtype tumors
are significantly less likely to respond to FOLFIRINOX-based regi-
mens strongly supports the need for the incorporation of molecular
subtyping in future clinical trials to determine the association of
molecular subtypes with this and other therapies. In addition, the
stability of PurIST subtypes after treatment is a noteworthy finding
and may point to fundamental biological differences in the tumor
subtypes. However, larger clinical trials with pre- and posttreatment
biopsies will be needed to determine whether this is a treatment-
dependent observation. Our ability to subtype based on either core
or FNA biopsies considerably increases the flexibility and practicality
of integrating PDAC molecular subtypes into future clinical trials in
the metastatic and neoadjuvant setting where bulk specimens are
rarely available.

In summary, we present a clinically usable SSC that may be used
on any type of gene expression data including RN Aseq, microarray,
and NanoString, and on diverse sample types including FFPE, core
biopsies, FNAs, and bulk frozen tumors. Although results of the
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